PENJUMLAHAN DUA SUDUT (a + b)
sin(a + b) = sin a cos b + cos a sin bcos(a + b) = cos a cos b - sin a sin btg(a + b ) = tg a + tg b
1 - tg2a
SELISIH DUA SUDUT (a - b)
sin(a - b) = sin a cos b - cos a sin bcos(a - b) = cos a cos b + sin a sin btg(a - b ) = tg a - tg b
1 + tg2a
SUDUT RANGKAP
sin 2a = 2 sin a cos a
cos 2a = cos2a - sin2 a
= 2 cos2a - 1
= 1 - 2 sin2a
tg 2a = 2 tg 2a
1 - tg2a
sin a cos a = ½ sin 2a
cos2a = ½(1 + cos 2a)
sin2a = ½ (1 - cos 2a)
Secara umum :
sin na = 2 sin ½na cos ½na
cos na = cos2 ½na - 1
= 2 cos2 ½na - 1
= 1 - 2 sin2 ½na
tg na = 2 tg ½na
1 - tg2 ½na
JUMLAH SELISIH DUA FUNGSI YANG SENAMA
BENTUK PENJUMLAHAN ® PERKALIAN
sin a + sin b = 2 sin a + b cos a - b
2 2
sin a - sin b = 2 cos a + b sin a - b
2 2
cos a + cos b = 2 cos a + b cos a - b
2 2
cos a + cos b = - 2 sin a + b sin a - b
2 2
BENTUK PERKALIAN ® PENJUMLAHAN
2 sin a cos b = sin (a + b) + sin (a - b)
2 cos a sin b = sin (a + b) - sin (a - b)
2 cos a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)
PENJUMLAHAN FUNGSI YANG BERBEDA
Bentuk a cos x + b sin x
Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x - a)
a cos x + b sin x = K cos (x-a)dengan :
K = Öa2 + b2 dan tg a = b/a Þ a = ... ?
Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut
PERSAMAAN
I. sin x = sin a Þ x1 = a + n.360°
x2 = (180° - a) + n.360°
cos x = cos a Þ x = ± a + n.360°
tg x = tg a Þ x = a + n.180° (n = bilangan bulat)
II. a cos x + b sin x = c
a cos x + b sin x = C
K cos (x-a) = C
cos (x-a) = C/K syarat persamaan ini dapat diselesaikan
-1 £ C/K £ 1 atau K² ³ C² (bila K dalam bentuk akar)
misalkan C/K = cos b
cos (x - a) = cos b
(x - a) = ± b + n.360° ® x = (a ± b) + n.360°
4. GETARANsin(a + b) = sin a cos b + cos a sin bcos(a + b) = cos a cos b - sin a sin btg(a + b ) = tg a + tg b
1 - tg2a
SELISIH DUA SUDUT (a - b)
sin(a - b) = sin a cos b - cos a sin bcos(a - b) = cos a cos b + sin a sin btg(a - b ) = tg a - tg b
1 + tg2a
SUDUT RANGKAP
sin 2a = 2 sin a cos a
cos 2a = cos2a - sin2 a
= 2 cos2a - 1
= 1 - 2 sin2a
tg 2a = 2 tg 2a
1 - tg2a
sin a cos a = ½ sin 2a
cos2a = ½(1 + cos 2a)
sin2a = ½ (1 - cos 2a)
Secara umum :
sin na = 2 sin ½na cos ½na
cos na = cos2 ½na - 1
= 2 cos2 ½na - 1
= 1 - 2 sin2 ½na
tg na = 2 tg ½na
1 - tg2 ½na
JUMLAH SELISIH DUA FUNGSI YANG SENAMA
BENTUK PENJUMLAHAN ® PERKALIAN
sin a + sin b = 2 sin a + b cos a - b
2 2
sin a - sin b = 2 cos a + b sin a - b
2 2
cos a + cos b = 2 cos a + b cos a - b
2 2
cos a + cos b = - 2 sin a + b sin a - b
2 2
BENTUK PERKALIAN ® PENJUMLAHAN
2 sin a cos b = sin (a + b) + sin (a - b)
2 cos a sin b = sin (a + b) - sin (a - b)
2 cos a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)
PENJUMLAHAN FUNGSI YANG BERBEDA
Bentuk a cos x + b sin x
Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x - a)
a cos x + b sin x = K cos (x-a)
K = Öa2 + b2 dan tg a = b/a Þ a = ... ?
Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut
I | II | III | IV | |
a | + | - | - | + |
b | + | + | - | - |
keterangan :
a = koefisien cos x
b = koefisien sin x
a = koefisien cos x
b = koefisien sin x
PERSAMAAN
I. sin x = sin a Þ x1 = a + n.360°
x2 = (180° - a) + n.360°
cos x = cos a Þ x = ± a + n.360°
tg x = tg a Þ x = a + n.180° (n = bilangan bulat)
a cos x + b sin x = C
K cos (x-a) = C
cos (x-a) = C/K syarat persamaan ini dapat diselesaikan
-1 £ C/K £ 1 atau K² ³ C² (bila K dalam bentuk akar)
misalkan C/K = cos b
cos (x - a) = cos b
(x - a) = ± b + n.360° ® x = (a ± b) + n.360°
PENGERTIAN GETARAN
- | Getaran selaras adalah gerak proyeksi sebuah titik yang bergerak melingkar beraturan, yang setiap saat diproyeksikan pada salah satu garis tengah lingkaran. Gaya yang bekerja pada gerak ini berbanding lurus dengan simpangan benda dan arahnya menuju ke titik setirnbangnya. |
- | Getaran selaras sederhana adalah gerak harmonis yang grafiknya merupakan sinusoidal dengan frekuensi dan amplitudo tetap. |
- | Perioda atau waktu getar (T) adalah selang waktu yang diperlukan untuk melakukan satu getaran lengkap(detik). |
- | Freknensi (f) adalah jumlah getaran yang dilakukan dalam satu detik (Hertz). Hubungan freknensi dan perioda: f = 1/T |
PERSAMAAN GETARAN HARMONIS
Simpangan (y) | Kecepatan (Vy) | Percepatan (ay) |
y = A Sin q = A Sin w t | Vy = dy/dt = wA cos wt | ay = dvy/dt =d2y/dt2 = -w2A sin wt ay = -w2y |
A = ampiltudo getaran w = kecepatan anguler w = 2 pf = 2p/T ymaks = A (di titik tertinggi ) |
Tidak ada komentar:
Posting Komentar